On the symmetry function of a convex set
نویسندگان
چکیده
We attempt a broad exploration of properties and connections between the symmetry function of a convex set S ⊂ IRn and other arenas of convexity including convex functions, convex geometry, probability theory on convex sets, and computational complexity. Given a point x ∈ S, let sym(x, S) denote the symmetry value of x in S: sym(x, S) := max{α ≥ 0 : x + α(x− y) ∈ S for every y ∈ S} , which essentially measures how symmetric S is about the point x, and define sym(S) := max x∈S sym(x, S) ; x∗ is called a symmetry point of S if x∗ achieves the above maximum. The set S is a symmetric set if sym(S) = 1. There are many important properties of symmetric convex sets; herein we explore how these properties extend as a function of sym(S) and/or sym(x, S). By accounting for the role of the symmetry function, we reduce the dependence of many mathematical results on the strong assumption that S is symmetric, and we are able to capture and otherwise quantify many of the ways that the symmetry function influences properties of convex sets and functions. The results in this paper include functional properties of sym(x, S), relations with several convex geometry quantities such as volume, distance, and cross-ratio distance, as well as set approximation results, including a refinement of the Löwner-John rounding theorems, and applications of symmetry to probability theory on convex sets. We provide a characterization of symmetry points x∗ for general convex sets. Finally, in the polyhedral case, we show how to efficiently compute sym(S) and a symmetry point x∗ using linear programming. The paper also contains discussions of open questions as well as unproved conjectures regarding the symmetry function and its connection to other areas of convexity theory.
منابع مشابه
Functionally closed sets and functionally convex sets in real Banach spaces
Let $X$ be a real normed space, then $C(subseteq X)$ is functionally convex (briefly, $F$-convex), if $T(C)subseteq Bbb R $ is convex for all bounded linear transformations $Tin B(X,R)$; and $K(subseteq X)$ is functionally closed (briefly, $F$-closed), if $T(K)subseteq Bbb R $ is closed for all bounded linear transformations $Tin B(X,R)$. We improve the Krein-Milman theorem ...
متن کاملConvex Generalized Semi-Infinite Programming Problems with Constraint Sets: Necessary Conditions
We consider generalized semi-infinite programming problems in which the index set of the inequality constraints depends on the decision vector and all emerging functions are assumed to be convex. Considering a lower level constraint qualification, we derive a formula for estimating the subdifferential of the value function. Finally, we establish the Fritz-John necessary optimality con...
متن کاملON THE POWER FUNCTION OF THE LRT AGAINST ONE-SIDED AND TWO-SIDED ALTERNATIVES IN BIVARIATE NORMAL DISTRIBUTION
This paper addresses the problem of testing simple hypotheses about the mean of a bivariate normal distribution with identity covariance matrix against restricted alternatives. The LRTs and their power functions for such types of hypotheses are derived. Furthermore, through some elementary calculus, it is shown that the power function of the LRT satisfies certain monotonicity and symmetry p...
متن کاملA bi-level linear programming problem for computing the nadir point in MOLP
Computing the exact ideal and nadir criterion values is a very important subject in multi-objective linear programming (MOLP) problems. In fact, these values define the ideal and nadir points as lower and upper bounds on the nondominated points. Whereas determining the ideal point is an easy work, because it is equivalent to optimize a convex function (linear function) over a con...
متن کاملOn Polar Cones and Differentiability in Reflexive Banach Spaces
Let $X$ be a Banach space, $Csubset X$ be a closed convex set included in a well-based cone $K$, and also let $sigma_C$ be the support function which is defined on $C$. In this note, we first study the existence of a bounded base for the cone $K$, then using the obtained results, we find some geometric conditions for the set $C$, so that ${mathop{rm int}}(mathrm{dom} sigma_C) neqem...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Math. Program.
دوره 111 شماره
صفحات -
تاریخ انتشار 2008